Sabtu, 16 Januari 2016

UJT & BJT


1.   Unijunction Transistor (UJT) merupakan sebuah Komponen semikonduktor yang terdiri atas hubungan PN. Type P dihubungkan dengan emiter sedangkan Type N membentuk Base B1 dan B2. Komponen ini dikenal dengan nama “Dioda dua Basis”. Bahan dasar terbuat dari silikon. Gambar a menunjukkan susunan dasar UJT. Kira-kira ditengah batang silikon (material Type N) terdapatlah meterial P ini akan bekerja sebagai emiter E, jadi terdapatlah junction PN pada batangan tersebut.




SIFAT DASAR UJT
Transistor ini dapat dipandang sebagai suatu pembagi tegangan yang terdiri dari dua buah tahanan yang berderet yaitu RB1 dan RB2 (lihat Gambar.). Adapun pertemuan PN bekerja sebagai Dioda. (lihat pelajaran yang lalu). Dioda akan menghantar / Konduksi bila diberi tegangan bias maju (Forward Bias), sebaliknya Dioda tidak akan menghantar bila diberi tegangan bias mundur (Reverse Bias).

PRINSIP KERJA UJT
Prinsip kerja UJT tak ubahnya sebagai saklar Input dari jenis Transistor, ini diambil dari Emitor yang mempunyai tahanan dan tahanan ini dengan cepat menurun nilaianya jika tegangan Input naik sampai level tertentu.


Cara Kerja UJT
Perhatikan Gambar, antara terminal-terminal B1- B2 kita beri tegangan UB1 B2 = 9 Volt. Maka terjadilah pembagian tegangan antara RB1 dan RB2, Dioda tidak bekerja. Mula-mula tegangan catu pada Emiter sama dengan nol, maka Dioda Emiter berada dalam keadaan Reverse bias. Bila tegangan ini diperbesar maka UE akan ikut bertambah besar,tetapi Emiter tetap tidak akan menghantar sebelum UE>U1 + UK. UK = Knee Voltage dari Dioda tersebut.
Setelah UE>U1+ UK, maka Dioda dalam keadaan Forward bias dan dia mulai menghantar. Oleh karena daerah P mendapat doping yang berat sedangkan daerah N didoping ringan, maka pada saat forward bias banyak hole dari daerah P ini yang tidak dapat berkombinasi dengan elektron bebas dari daerah N.
Hole-hole tersebut akan merupakan suatu pembawa muatan positip pada daerah basis 1 (B1). hal ini menyebabkan tahanan RB1 pada daerah basis turun hingga mencapai suatu harga yang kecil sekali, sehingga dapat dikatakan antara Emiter dan basis 1 (B1) terjadi hubung singkat. Dari sini jelas bahwa dioda Emitor pada UJT berfungsi sebagai saklar dan saklar ini akan tetap tinggal tertutup selama arus Emitor masih lebih besar dari suatu harga tertentu yang disebut “Valley Current”

2.   BJT (Bipolar Junction Transistor) tersusun atas tiga material semikonduktor terdoping yang dipisahkan oleh dua sambungan pn. Ketiga material semikonduktor tersebut dikenal dalam BJT sebagai emitter, base dan kolektor (Gambar 1). Daerah base merupakan semikonduktor dengan sedikit doping dan sangat tipis bila dibandingkan dengan emitter (doping paling banyak) maupun kolektor (semikonduktor berdoping sedang). Karena strukturnya fisiknya yang seperti itu, terdapat dua jenis BJT. Tipe pertama terdiri dari dua daerah n yang dipisahkan oleh daerah p (npn), dan tipe lainnya terdiri dari dua daerah p yang dipisahkan oleh daerah n (pnp). Sambungan pn yang menghubungkan daerah base dan emitter dikenal sebagai sambungan base-emiter (base-emitter junction), sedangkan sambungan pn yang menghubungkan daerah base dan kolektor dikenal sebagai sambungan base-kolektor (base-collector junction).


Gambar 1. Dua Jenis Bipolar Junction Transistor (BJT)

Gambar 2 menunjukkan simbol skematik untuk bipolar junction transistor tipe npn dan pnp. Istilah bipolar digunakan karena adanya elektron dan hole sebagai muatan pembawa (carriers) didalam struktur transistor.


Gambar 2. Simbol BJT tipe npn dan pnp

Prinsip Kerja Transistor
     Gambar 3 menunjukkan rangkaian kedua jenis transistor npn dan pnp dalam mode operasi aktif transistor sebagai amplifier. Pada kedua rangkaian, sambungan base-emiter (BE) dibias maju (forward-biased) sedangkan sambungan base-kolektor (BC) dibias mundur (reverse-biased).
Gambar 3. Forward-Reverse Bias pada BJT
     Sebagai gambaran dan ilustrasi kerja transistor BJT, misalkan pada transistor npn (gambar 4). Ketika base dihubungkan dengan catu tegangan positif dan emiter dicatu dengan tegangan negatif maka daerah depletion BE akan menyempit. Pencatuan ini akan mengurangi tegangan barrier internal sehingga muatan mayoritas (tipe n) mampu untuk melewati daerah sambungan pn yang ada. Beberapa hole dan elektron akan mengalami rekombinasi di daerah sambungan sehingga arus mengalir melalui device dibawa oleh hole pada base(daerah tipe-p) dan elektron pada emiter (daerah tipe-n ). Karena derajat doping pada emiter (daerah tipe n) lebih besar daripada base (daerah tipe p), arus maju akan dibawa lebih banyak oleh elektron. Aliran dari muatan minoritas akan mampu melewati sambungan pn sebagai kondisi reverse bias tetapi pada skala yang kecil sehingga arus yang timbul pun sangat kecil dan dapat diabaikan.
     Elektron banyak mengalir dari emiter ke daerah base yang tipis. Karena daerah base berdoping sedikit, elektron pada hole tidak dapat berekombinasi seluruhnya tetapi berdifusi ke dalam daerah depletion BC. Karena base dicatu negatif dan kolektor dicatu positif (reverse bias), maka depletion BC akan melebar. Pada daerah depletion BC, elektron yang mengalir dari emiter ke base akan terpampat pada daerah depletion BC. Karena pada daerah kolektor terdapat muatan minoritas (ion positif) maka pada daerah sambungan BC akan terbentuk medan listrik oleh gaya tarik menarik antara ion positif dan ion negatif sehingga elektron tertarik kedaerah kolektor. Arus listrik kemudian akan mengalir melalui device.

 






















Sumber : http://becmandiri09.blogspot.co.id/2011/06/unijunction-transistor.html
                https://tanotocentre.wordpress.com/2010/10/26/bipolar-junction-transistor-bjt/



Daerah Kerja Transistor Pada Saturasi ,Aktif, dan Cut Off


Titik Kerja Transistor Daerah Jenuh ( Saturasi )
Transistor Daerah kerja transistor saat jenuh adalah keadaan dimana transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor tersebut seolah-olah short pada hubungan kolektor – emitor. Pada daerah ini transistor dikatakan menghantar maksimum (sambungan CE terhubung maksimum)

Titik Kerja Daerah Aktif Transistor( Aktif )
Pada daerah kerja ini transistor biasanya digunakan sebagai penguat sinyal. Transistor dikatakan bekerja pada daerah aktif karena transistor selelu mengalirkan arus dari kolektor ke emitor walaupun tidak dalam proses penguatan sinyal, hal ini ditujukan untuk menghasilkan sinyal keluaran yang tidak cacat. Daerah aktif terletak antara daerah jenuh (saturasi) dan daerah mati (Cut off).

Titik Kerja Daerah Mati Transistor ( Cut Off )
Daerah cut off merupakan daerah kerja transistor dimana keadaan transistor menyumbat pada hubungan kolektor – emitor. Daerah cut off sering dinamakan sebagai daerah mati karena pada daerah kerja ini transistor tidak dapat mengalirkan arus dari kolektor ke emitor. Pada daerah cut off transistor dapat di analogikan sebagai saklar terbuka pada hubungan kolektor – emitor.

Grafik Kurva Karakteristik Transistor

Grafik Kurva Karakteristik Transistor,karakteristik transistor,transistor sebagai sakalar,daerah jenuh transistor,daerah mati transistor,daerah kerja transistor,titik cut-off transistor,titik saturasi transistor,daerah aktif transistor 
Untuk membuat transistor menghantar, pada masukan basis perlu diberi tegangan. Besarnya tegangan harus lebih besar dari Vbe (0,3 untuk germanium dan 0,7 untuk silicon). Dengan mengatur Ib>Ic/β kondisi transistor akan menjadi jenuh seakan kolektor dan emitor short circuit. Arus mengalir dari kolektor ke emitor tanpa hambatan dan Vce≈0. Besar arus yang mengalir dari kolektor ke emitor sama dengan Vcc/Rc. Keadaan seperti ini menyerupai saklar dalam kondisi tertutup (ON).
Grafik Kurva Karakteristik Transistor Untuk membuat transistor menghantar, pada masukan basis perlu diberi tegangan. Besarnya tegangan harus lebih besar dari Vbe (0,3 untuk germanium dan 0,7 untuk silicon). Dengan mengatur Ib>Ic/β kondisi transistor akan menjadi jenuh seakan kolektor dan emitor short circuit. Arus mengalir dari kolektor ke emitor tanpa hambatan dan Vce≈0. Besar arus yang mengalir dari kolektor ke emitor sama dengan Vcc/Rc. Keadaan seperti ini menyerupai saklar dalam kondisi tertutup (ON).

Transistor Kondisi Jenuh (Saklar Posisi ON)

Transistor Sebagai Saklar Kondisi Saturasi,transistor ON,transistor saturasi,transistor jenuh,rangkaian saklar transistor,saklar transistor,saklar ON transistor,arus saklar transistor,rumus saklar transistor,rumus transistor sebagai saklar
Besarnya tegangan kolektor emitor Vce suatu transistor pada konfigurasi diatas dapat diketahui sebagai berikut.

Vce=Vcc-Ic\cdot Rc

Karena kondisi jenuh Vce = 0V (transistor ideal) maka besarnya arus kolektor (Ic) adalah :

Ic=\frac{Vcc}{Rc}

Besarnya arus yang mengalir agar transistor menjadi jenuh (saturasi) adalah:

Rb=\frac{Vi-Vbe}{Ib}

Sehingga besar arus basis Ib jenuh adalah : 

Ib\geq \frac{Ic}{\beta }

Transistor Kondisi Mati (Saklar Posisi OFF)

Transistor Sebagai Saklar Posisi Cut Off,sakalr transistor off,transistor mati,transistor cut-off,saklar transistor off,teori transistor sebagai saklar,teori saklar transistor,daerah mati transistor,saklar transistor off
Dengan mengatur Ib = 0 atau tidak memberi tegangan pada bias basis atau basis diberi tegangan mundur terhadap emitor maka transistor akan dalam kondisi mati (cut off), sehingga tak ada arus mengalir dari kolektor ke emitor (Ic≈0) dan Vce ≈ Vcc. Keadaan ini menyerupai saklar pada kondisi terbuka seperti ditunjukan pada gambar  diatas. Besarnya tegangan antara kolektor dan emitor transistor pada kondisi mati atau cut off  adalah :

Vce=Vcc-Ic\cdot Rc

Karena kondisi mati Ic = 0 (transistor ideal) maka:

Vce=Vcc\cdot Rc

Vce=Vcc

Besar arus basis Ib adalah :

Ib=\frac{Ic}{\beta }

Ib=0

THANK YOU !!!
Sumber : http://elektronika-dasar.web.id/transistor-sebagai-saklar/




Jumat, 08 Januari 2016

TUGAS ELEKTRONIKA DASAR

Jelaskan bagaimana cara kerja dioda sebagai :
a. penyearah setengah gelombang 
b. penyearah gelombang penuh

Jawaban !

a. Bagaimana cara kerja dioda sebagai penyearah setengah gelombang

Penyearah setengah gelombang merupakan rangkaian penyearah yang paling sederhana, yaitu yang terdiri dari satu dioda. Gambar 1 menunjukkan rangkaian penyearah setengah gelombang. Rangkaian penyearah setengah gelombang memperoleh masukan dari sekunder trafo yang berupa tegangan berbentuk sinus, vi = Vm Sin wt (gambar 1 (b)). Vm merupakan tegangan puncak atau tegangan maksimum. Harga Vm ini hanya bisa diukur dengan CRO, sedangkan harga yang tercantum pada sekunder trafo merupakan tegangan efektif yang dapat diukur dengan menggunakan volt meter. Hubungan antara tegangan puncak Vm dengan tegangan efektif (Veff) atau tegangan rms.

Prinsip kerja penyearah setengah gelombang adalah bahwa pada saat sinyal input berupa siklus positip maka dioda mendapat bias maju sehingga arus (i) mengalir ke beban (RL), dan sebaliknya bila sinyal input berupa siklus negatip maka dioda mendapat bias mundur sehingga tidak mengalir arus. Bentuk gelombang tegangan input (vi) ditunjukkan pada (b) dan arus beban (i) pada (c) dari gambar 1.

Resistansi dioda pada saat ON (mendapat bias maju) adalah Rf, yang umumnya nilainya lebih kecil dari RL. Pada saat dioda OFF (mendapat bias mundur) resistansinya besar sekali atau dalam pembahasan ini dianggap tidak terhigga, sehingga arus dioda tidak mengalir atau i = 0. Arus yang mengalir ke beban (i) terlihat pada gambar (c) bentuknya arus searah (satu arah) yang harga rataratanya tidak sama dengan nol seperti pada arus bolak-balik.
Dalam perencanaan rangkaian penyearah, hal penting untuk diketahui adalah harga tegangan maksimum yang diijinkan terhadap dioda. Tegangan maksimum ini sering disebut PIV (peak- nverse voltage) atau tegangan puncak balik. Hal ini karena pada saat diode mendapat bias mundur (balik) maka tidak arus yang mengalir dan semua tegangan dari sekunder trafo berada pada dioda


b. Bagaimana cara kerja dioda sebagai penyearah gelombang penuh

Penyearah Gelombang Penuh

Penyearah Gelombang Penuh
Penyearah gelombang penuh (full wave rectifier) adalah sistem penyearah yang menyearahkan semua siklus gelombang sinus menggunakan dua blok dioda (satu blok dioda bisa berupa satu atau beberapa dioda yang diparalel) yang bekerja secara komplenen. Satu dioda bekerja pada fase siklus positif dan satu dioda bekerja pada fase siklus negatif yang telah dibalik. Oleh karena itu penyearah gelombang penuh identik dengan penggunaan transformator center tap (CT) yang memiliki dua buah output sinyal AC dengan fase berkebalikan.

Rangkaian penyearah gelombang penuh menghasilkan tegangan DC dengan riak (ripple) yang lebih sedikit dibanding penyearah setengan gelombang. Hal ini karena gelombang yang dihasilkan lebih rapat yaitu hasil penggabungan dari siklus sinyal sinus positif dan siklus sinyal sinus negatif yang telah dibalik menjadi siklus positif. Jadi penyearah akan tetap mengeluarkan output pada periode gunung dan lembah dari sinyal sinus.
 
Prinsip Kerja Penyearah Gelombang Penuh
Sebuah rangkaian penyearah gelombang penuh dibangun dari sebuah transformator CT dengan dua dioda penyearah. Fungsi transformator CT adalah menghasilkan dua buah sinyal sinus dengan fase yang berkebalikan. Satu lilitan menghasilkan fase yang sama dengan input dan satu lilitan yang lain menghasilkan fase yang berkebalikan dari sinyal input.
Analisa Penyearah Gelombang Penuh
Dengan dua sinyal AC yang saling berbeda fase ini maka kedua dioda yang masing-masing berfungsi sebagai penyearah setengah gelombang dapat bekerja secara bergantian. Satu dioda menyearahkan siklus positif dari lilitan atas dan satu dioda kemudian ganti menyearahkan siklus positif dari lilitan bawah yang merupakan balikan fasa dari siklus negatif sinyal input AC.
Bentuk Sinyal Penyearah Gelombang Penuh
Output dari penyearah gelombang penuh yang lebih rapat dari penyearah setengah gelombang menyebabkan riak (ripple) yang ada pada output tegangan DC menjadi lebih kecil. Akibatnya output dari penyearah gelombang penuh menjadi lebih halus dan lebih stabil dari penyearah setengah gelombang.

Perhitungan tegangan DC pada penyearah gelombang penuh bisa dikatakan dua kali dari penyearah setengah gelombang. Hal ini karena semua siklus sinyal AC dikeluarkan. Jadi besarnya tegangan output dari penyearah gelombang penuh adalah 2 kali Vmax dibagi dengan π (pi). Dimana besarnya Vmax adalah tegangan puncak (V-peak) dari salah satu siklus sinyal AC. Atau sebesar 0.637Vmax. Dan jika dihitung dengan nilai RMS menjadi 0.637 kali √2 sama dengan 0.9Vrms.
Rumus Penyearah Gelombang Penuh
Kelebihan Dan Kekurangan Penyearah Gelombang Penuh
Kelebihan dari penyearah gelombang penuh jelas terlihat pada outputnya yang lebih halus, stabil dan efisien karena mengeluarkan semua siklus sinyal input AC. Penyearah gelombang penuh juga cocok untuk membuat power supply simetris dengan output tegangan positif, nol dan negatif yang banyak dipakai pada sistem power amplifier OCL.

Kelemahan dari penyearah gelombang penuh sebenarnya hanya dari segi biaya saja. Jika dipakai untuk menghasilkan power supply tunggal (single-supply) terlihat lebih mahal karena harus menyediakan satu lilitan lagi pada transformator untuk membalik fase. Untuk itulah dibuat penyearah sistem jembatan (bridge rectifier) yang lebih efektif pada aplikasi power supply tunggal (single-supply). Lebih jelas tentang penyearah sistem jembatan (bridge rectifier) insyaAllah akan ditulis pada artikel selanjutnya..

Sumber :
http://elektronika11c.blogspot.co.id/2013/05/penyearah-setengah-gelombang-gelombang.html
http://www.nulis-ilmu.com/2015/08/penyearah-gelombang-penuh.html